
BAB III

KERANGKA KONSEP

Gambar 2. Kerangka Konsep Penelitian

Berdasarkan kerangka konsep itu, penyakit degeneratif dipicu oleh stress oksidatif sebab radikal bebas dan antioksidan tubuh yang tidak seimbang. Sehingga menimbulkan penyakit seperti radang sendi, peradangan, kanker, dan penuaan dini. Untuk mencegah dan mengatasi stres oksidatif, dipakai antioksidan yang terbagi dalam dua jenis berdasarkan sumbernya, yakni antioksidan sintetik dan antioksidan alami. Pada penelitian ini, antioksidan alami yang dipergunakan berasal dari tanaman talas (Colocasia esculenta L.). Tanaman talas memuat empat bagian, yakni akar, umbi, tangkai daun, dan daun, tetapi penelitian ini berfokus pada tangkai daun tanaman talas. Tangkai daun talas diekstraksi mempergunakan teknik maserasi dengan dua pelarut berbeda, yakni etanol 70% dan 96%. Proses maserasi dijalankan dengan merendam bubuk tangkai daun talas yang sudah dikeringkan dan dihaluskan ke dalam pelarut selama 7 hari pada suhu kamar, selanjutnya dilakukan evaporasi untuk mendapatkan ekstrak kental. Kemudian diuji mempergunakan skrining fitokimia untuk mendeteksi senyawa aktif seperti flavonoid, alkaloid, tanin, saponin, terpenoid, dan steroid (uji kualitatif) (Mu'nisa., 2023), serta diuji aktivitas antioksidannya mempergunakan metode DPPH dengan spektrofotometer pada panjang gelombang 517 nm. Metode DPPH bekerja dengan memanfaatkan perubahan warna larutan radikal bebas DPPH dari ungu menjadi kuning akibat reaksi dengan pendonor electron (Suteja et al., 2022). Aktivitas antioksidan sampel selanjutnya diukur berdasarkan nilai IC50 (konsentrasi yang bisa menghambat 50% radikal bebas) dan nilai AAI (Antioxidant Activity Index), yang diklasifikasikan berdasarkan kategori khusus (Purwanto et al., 2017).

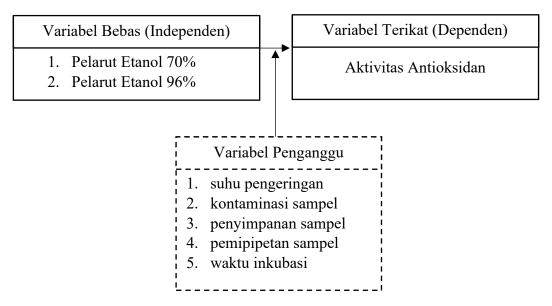
B. Variabel dan Definisi Operasional Variabel

1. Variabel penelitian

Variabel ialah objek yang menjadi fokus penelitian, yang bersifat abstrak atau nyata. Penentuan variabel dijalankan dengan cara yang sistematis dan selaras dengan prinsip-prinsip ilmiah. Variabel penelitian merujuk pada atribut atau sifat dari individu, objek, atau aktivitas dengan berbagai jenis dan ditentukan oleh peneliti untuk dianalisis guna mendapat informasi terkait hal itu, kemudian menarik kesimpulan (Aridiyanto *et al.*, 2022). Penelitian ini memiliki 2 variabel yakni variabel bebas (X) dan variabel terikat (Y).

a. Variabel bebas (variabel independen)

Variabel bebas atau yang sering juga disebut variabel independen, variabel bebas merujuk pada faktor yang berperan dalam X terjadinya perubahan pada variabel Y (Suwarsa *et al.*, 2021). Variabel X penelitian ini merupakan pelarut etanol 70% dan 96%.


b. Variabel terikat (variabel dependen)

Variabel terikat atau yang sering juga disebut variabel dependen, variabel terikat variabel yang dipengaruhi atau merupakan hasil dari adanya perubahan yang ditimbulkan oleh variabel X (Suwarsa *et al.*, 2021). Variabel Y dalam studi ini merupakan aktivitas antioksidan.

c. Variabel Pengganggu (variabel confounder)

Variabel pengganggu merupakan variabel yang mengganggu hubungan antara variabel X dan Y. Variabel pengganggu dari penelitian ini adalah suhu pengeringan, kontaminasi sampel, penyimpanan sampel, pemipipetan sampel, dan waktu inkubasi.

Bagan Hubungan Antara Variabel

Gambar 3. Bagan hubungan antara variable

2. Definisi Operasional Variabel

Tabel 3
Definisi Operasional Variabel Penelitian

Variabel	Definisi	Cara Ukur	Skala
	Operasional		
1	2	3	4
Pelarut	Pelarut etanol	Jumlah pelarut yang dipakai	Rasio
etanol 70%	70% dan 96%	disesuaikan dengan jumlah	
dan 96%	merupakan	serbuk simplisia atau hingga	
	larutan atau	semua serbuk simplisia	
	cairan yang	terendam	
	dipakai untuk		
	mengekstraksi		
	bahan alam		
	sehingga bisa		
	dianalisa		
Tangkai	Tangkai daun	Daun yang sudah melalui	Rasio
daun talas	talas (Colocasia	proses sortasi dan ditimbang	
(Colocasia	esculenta L.)		
esculenta	merupakan		
L.)	tangkai yang		
	didapat dari		

1	2	3	4
Ekstrak tangkai daun talas (Colocasia esculenta L.)	tanaman talas. Tangkai daun yang dipakai berukuran 60 cm dari pangkal ke ujung tangkai dan memiliki warna hijau Ekstrak etanol 70% dan 96% Tangkai daun talas (Colocasia esculenta L.) merupakan ekstrak kental yang yang didapat dari tangkai daun talas. Bubuk bahan tangkai daun talas Bubuk bahan tangkai daun talas bubuk bahan tangkai daun talas dimaserasi menggunakan 2 jenis pelarut yang berbeda, yakni dengan pelarut etanol 70% dan 96%, kemudian dilakukan	Proses ekstraksi menggunakan metode maserasi secara kualitatif	Nominal
	evaporasi untuk mendapatkan ekstrak kentalnya		
Skrining Fitokimia	Skrining fitokimia dipakai untuk mengetahui kandungan metabolit sekunder yang	Pengujian secara kualitatif dilakukan dengan cara mengamati perubahan yang terjadi sesudah penambahan reagen pada tiap-tiap uji.	1. Flavonoid: (+): terbentuk warna kuning. (-): tidak terjadi

1 2	3 4
terkandung di	
dalam tangkai	perubahan
daun talas.	warna
	2. Saponin (+):
	ada busa
	yang
	terbentuk
	(-): Tidak
	ada busa
	3. Terpenoid
	dan Steroid
	(+):
	terbentuk
	larutan
	warna biru
	dan merah-
	jingga atau
	ungu
	(-): tidak ada
	perubahan
	warna
	4. Alkaloid
	(Dragendorf)
	(+): Endapan
	jingga
	sampai
	merah
	kecoklatan
	(-): tidak ada
	endapan
	(Mayer
	Wagner)
	(+): Endapan
	kuning
	5. (-): tidak ada
	endapan
	Tanin
	(+): warna
	biru
	kehitaman
	(-): Tidak

1	2	3	4
			terjadi
			perubahan
			warna
Uji	Uji aktivitas	Pengukuran uji aktivitas	1. <0,5: Lemah
Aktivitas	antioksidan	antioksidan metode DPPH	2. 0,5-1:
Antioksidan	metode DPPH	dilakukan menggunakan alat	Sedang
Ekstrak	merupakan uji	spektrofotometer dengan	3. 1-2: Kuat
tangkai	kuantitatif yang	panjang gelombang pada	4. >2: Sangat
daun talas	dilakukan untuk	rentang 517 nm. Uji aktivitas	kuat
	mendeteksi	antioksidan ditentukan	
	senyawa	berdasarkan nilai AAI	
	antioksidan pada	sampel yang didapat dan	
	sampel yang	diklasifikasikan berdasarkan	
	akan di analisis.	kategori yang sudah	
		ditentukan.	

C. Hipotesis

Sugiyono (2016) memaparkan bahwasanya "hipotesis ialah jawaban sementara atas rumusan masalah." Hipotesis yang dipergunakan yakni, terdapat perbedaan penggunaan pelarut etanol 70% dan 96% pada aktivitas antioksidan ekstrak tangkai daun talas (*Colocasia esculenta* L.)