BABI

PENDAHULUAN

A. Latar Belakang

Resistensi Antimikroba merupakan ancaman besar terhadap kesehatan global dan banyaknya upaya serta investasi negara-negara untuk secara efektif memerangi berbagai macam penyakit menular. Menurut laporan WHO pada tahun 2014, WHO secara resmi mengakui resistensi antimikroba sebagai program prioritas utama regional di kawasan Asia Tenggara, yang menekankan signifikansi kritisnya dalam lanskap kesehatan regional. Yang berarti kawasan Asia Tenggara memiliki resiko tertinggi dalam kasus resistensi antimikroba. Menurut perkiraan, bakteri AMR menyebabkan 4,95 juta kematian di seluruh dunia pada tahun 2019 dan secara langsung bertanggung jawab atas 1,27 juta kematian (WHO, 2024).

Negara-negara di Asia Tenggara menghadapi situasi yang buruk mengenai resistensi antibiotik karena adanya akses terbatas terhadap antimikroba mengakibatkan banyak infeksi bakteri tidak diobati, sehingga meningkatkan morbiditas dan mortalitas. Selain itu faktor utama yang menyebabkan resistensi antimikroba adalah penggunaan agen antimikroba atau antibiotik yang berlebihan dan tidak tepat (Widyastuti *et al.*, 2022). Laporan WHO pada Sistem Pengawasan Penggunaan dan Resistensi Antimikroba Global (GLASS) 2022 menyoroti tingkat resistensi yang mengkhawatirkan di antara patogen bakteri yang umum. Tingkat median yang menjadi perhatian utama dilaporkan WHO

di 76 negara sebesar 35% untuk *Staphylococcus aureus* yang resistan terhadap methicillin (WHO, 2024).

Masalah besar yang saat ini menjadi tantangan pada dunia medis yaitu adanya Methicillin Resistant Staphylococcus aureus (MRSA) merupakan strain bakteri *Staphylococcus aureus* yang resisten terhadap beberapa golongan antibiotik. Bakteri *Staphylococcus aureus* dapat menyebabkan berbagai infeksi serius, mulai dari infeksi kulit hingga pneumonia, endokarditis, dan sepsis, yang berpotensi fatal, terutama pada individu dengan sistem kekebalan tubuh yang lemah. Kemampuannya untuk membentuk biofilm yang melindungi bakteri dari pengobatan dan sistem kekebalan tubuh membuat infeksi ini semakin sulit diatasi. Sehingga mengakibatkan, penyakit pasien semakin parah dan bisa mengakibatkan angka kematian yang tinggi. Tantangan medis ini memerlukan pemanfaatan sumber daya alternatif yang memberikan Solusi berkelanjutan dalam pengembangan agen antibakteri baru (Lade and Kim, 2021).

Pengembangan obat antibakteri khususnya pada bakteri *staphylococcus* aureus terus mengalami perubahan dan perkembangan dengan mencari senyawa baru dari berbagai sumber bahan alam. Di Indonesia sendiri sangat banyak bahan alam yang sudah turun menurun digunakan sebagai bahan penemuan obat. Bahan alam pada tumbuhan dapat menghasilkan senyawa tertentu yang dapat bermanfaat sebagai senyawa bioaktif obat salah satunya dari jamur endofit (Siboro, 2019).

Jamur endofit hidup pada jaringan tanaman tanpa menimbulkan penyakit pada tanaman inangnya. Jamur endofit memiliki peranan yang dapat melindungi tanaman inangnya dari ancaman penyakit dengan mengeluarkan

senyawa metabolit sekunder. Oleh karena itu jamur endofit seringkali dikatakan sebagai mikroorganisme yang memiliki hubungan simbiosis mutualisme atau hubungan yang menguntungkan kedua belah pihak pada tanaman inangnya karena jamur endofit memiliki peranan yang dapat melindungi tanaman inangnya dari ancaman penyakit dengan mengeluarkan senyawa metabolit sekunder (Purnawati and Nirwanto, 2023).

Beberapa metabolit sekunder jamur endofit memiliki aktivitas antimikroba yang kuat, mampu menghambat pertumbuhan bakteri, jamur, atau bahkan sel kanker (Chusniasih *et al.*, 2024). Cara kerjanya pun beragam, mulai dari merusak dinding sel bakteri, penghambatan sintesis protein, hingga terganggunya metabolisme sel. Potensi senyawa ini sangat besar dalam pengembangan obat-obatan baru, terutama sebagai alternatif antibiotik alami untuk mengatasi meningkatnya masalah resistensi antibiotik (Commanechi *et al.*, 2024).

Jamur endofit telah dieksplorasi dari ribuan tanaman inang di seluruh dunia, dengan jumlah tanaman inang yang telah dipelajari diperkirakan mencapai sekitar 300.000 spesies (Rashmi, 2019). Tanaman inang ini mencakup berbagai jenis tanaman. Penelitian mengenai jamur endofit dijalankan oleh (Ariyono, Djauhari and Sulistyowati, 2014), yang meneliti keanekaragaman jamur endofit yang di isolasi pada daun kangkung dan mendapatkan sekitar 15 jenis jamur endofit yang dapat di isolasi pada daun kangkung.

Pada jamur endofit yang diteliti oleh (Angelin *et al.*, 2022), jamur endofit di isolasi pada daun leilem (*Clerodendrum minahassaeL.*) kemudian dilakukan uji aktivitas antibakteri dan didapat 13 isolat jamur endofit daun leilem

yang berhasil diisolasi dan dikarakterisasi secara makroskopis dan terdapat 13 isolat jamur endofit daun leilem yang berhasil diisolasi dan 3 isolat yang efektif sebagai antibakteri terhadap *Staphylococus aureus* yang Dimana isolat tersebut memiliki daya hambat tertinggi yaitu 29 mm. Jamur endofit yang diisolasi oleh (Dewi and Ariantari, 2023) pada tanaman Mangrove Genus *Sonneratia* menunjukan isolat jamur endofit memiliki sifat antibakteri dimana terdapat 10 isolat jamur endofit dilaporkan menunjukan aktivitas antibakteri dan sitotoksik (Dewi and Ariantari, 2023). Hal ini menunjukan jamur endofit mampu memproduksi senyawa yang berpotensi sebagai antibakteri.

Salah satu sumber tanaman inang dari jamur endofit yang saat ini dapat dikembangkan yaitu berasal dari tanaman yang biasa di gunakan sehari hari sebagai bahan makanan seperti tanaman kangkung. Kangkung adalah salah satu jenis sayuran yang memiliki nilai ekonomi dan sangat populer, terutama di masyarakat Indonesia karena harganya yang terjangkau dan kangkung juga mengandung nutrisi yang baik untuk kesehatan. Pada penelitian yang dilakukan oleh (Widyaningrum, Ningrum and Maesaroh, 2021), kangkung darat memiliki berbagai senyawa bioaktif, seperti, flavonoid, alkaloid, Saponin,tannin dan vitamin, yang berpotensi memberikan manfaat kesehatan, termasuk meningkatkan sistem kekebalan tubuh dan mengurangi risiko penyakit kronis.

Tanaman kangkung memiliki kemampuannya untuk tumbuh di berbagai kondisi lingkungan dan waktu panen yang relatif cepat namun produksi atau penanaman kangkung darat (*Ipomoea reptans*) juga menghadapi beberapa kelemahan, seperti rentannya tanaman terhadap hama dan penyakit, yang dapat mengurangi hasil panen dan kualitasnya. Selain itu, penggunaan pestisida yang

berlebihan dalam budidaya konvensional dapat berdampak negatif pada lingkungan, kesehatan manusia dan bagi para masyarakat produsen. Oleh karena itu, strategi pemanfaatan tanaman kangkung dalam penelitian perlu dilakukan secara *eco-friendly*, salah satunya dengan menjadi tanaman inang jamur endofit yang dapat dijadikan sebagai bahan antibakteri (Dion *et al.*, 2021).

Pemilihan tanaman kangkung darat (*Ipomoea reptans*) yang akan diuji dalam penelitian ini dilakukan dengan hati-hati untuk memastikan bahwa sampel yang diambil representatif dan berkualitas tinggi. Proses pemilihan dimulai dengan survei lapangan di area perkebunan yang dikenal baik untuk budidaya kangkung. Tanaman yang dipilih harus bebas dari penyakit dan tandatanda hama, serta tampak sehat dan segar, untuk menjamin keberadaan jamur endofit yang optimal di dalam jaringan tanaman. Dengan pendekatan ini, diharapkan isolat jamur endofit yang berhasil diisolasi akan menunjukkan aktivitas antibakteri yang signifikan (Widyawati, 2023).

Selain pemilihan tanaman kangkung yang baik pada penelitian ini juga akan melakukan uji aktivitas antibakteri dengan menggunakan metode *agar plug*. Metode agar plug merupakan teknik yang efektif untuk menguji aktivitas antibakteri dari jamur endofit terhadap bakteri patogen. Pada metode ini, isolat jamur endofit ditumbuhkan pada media Potato Dextrose Agar (PDA) hingga mencapai pertumbuhan optimal, kemudian bagian dari koloni jamur yang dikenal sebagai agar plug diambil dan dipindahkan ke media Muller-Hinton Agar (MHA) yang sudah diinokulasi dengan bakteri *Staphylococcus aureus*. Setelah diinkubasi, peneliti dapat mengamati adanya zona hambat di sekitar

agar plug, yang menunjukkan keberadaan senyawa antibakteri yang dihasilkan oleh jamur endofit (Azizah, Rachmawati and Hidayah, 2021).

Untuk menghasilkan hasil yang signifikan dan valid pada penelitian ini,maka akan digunakan dua jenis kontrol, yaitu kontrol positif dan kontrol negatif sebagai perbandingan hasil untuk memastikan bahwa hasil pengujian tidak dipengaruhi oleh faktor eksternal. Pada kontrol negatif merupakan agar PDA yang steril tanpa penambahan zat kimia lainnya. Pada kontrol positif akan dilakukan penambahan antibiotik kloramfenikol pada media PDA yang akan digunakan sebagai media kontrol. Antibiotik kloramfenikol dipilih dalam penelitian ini karena kemampuannya yang luas dalam menghambat sintesis protein bakteri, sehingga efektif dalam mengatasi infeksi bakteri yang resisten terhadap antibiotik lain. Selain itu, kloramfenikol telah digunakan secara luas dalam praktik klinis, menjadikannya sebagai standar kontrol positif yang dapat diandalkan untuk membandingkan efektivitas isolat jamur endofit yang diujikan (Dinos et al., 2016).

B. Rumusan Masalah Penelitian

Berdasarkan latar belakang yang telah dijabarkan maka didapatkan rumusan masalah penelitian sebagai berikut:

Apakah isolat jamur endofit yang di isolasi pada tanaman kangkung darat (*Ipomoea reptans*) memiliki aktivitas antibakteri yang dapat menghambat bakteri *staphylococcus aureus*?

C. Tujuan Penelitian

1. Tujuan umum

Untuk mengetahui aktivitas antibakteri jamur endofit yang di isolasi pada tanaman kangkung darat (*Ipomoea reptans*)

2. Tujuan khusus

- a. Untuk mengisolasi spesies jamur endofit yang dominan sebagai antibakteri pada tanaman kangkung darat (*Ipomoea reptans*).
- b. Untuk mengetahui zona hambat yang dihasilkan jamur endofit yang di isolasi pada kangkung darat (*Ipomoea reptans*) terhadap bakteri *Staphylococcus aureus*.
- c. Untuk menganalisis zona hambat yang dihasilkan jamur endofit yang di isolasi pada kangkung darat (*Ipomoea reptans*) terhadap bakteri *Staphylococcus aureus*.

D. Manfaat Penelitian

1. Manfaat teoritis

Temuan penelitian ini diharapkan bisa digunakan sebagai sumber pustaka dan landasan bagi penelitian terkait kesehatan di masa depan, terutama pemanfaatan bahan alam tanaman kangkung sebagai salah satu alternatif tanaman inang jamur endofit untuk perkembangan antibiotik dalam pengobatan infeksi bakteri *staphylococcus aureus*.

2. Manfaat praktis

a. Sebagai peneliti

Temuan penelitian ini diharapkan bisa menjadi acuan dan referensi pada peneliti lain mengenai metode isolasi jamur endofit sebagai antimikroba sehingga penelitian selanjutnya dapat di kembangkan.

b. Bagi ilmu pengetahuan

Memberikan informasi ilmiah mengenai pemanfaatan tanaman kangkung darat sebagai inang jamur endofit dalam menghambat bakteri staphylococcus aureus.

c. Bagi Masyarakat

Memberikan dampak positif kepada masyarakat mengenai produksi kangkung darat yang dapat dimanfaatkan sebagai perkembangan antimikroba.