BAB II

TINJAUAN PUSTAKA

A. Makanan

1. Pengertian makanan

Pangan yaitu kebutuhan dasar manusia yang wajib dipenuhi yang menjadi sumber penting untuk kehidupan yang sehat, kecerdasan, dan produktivitas. Makanan yang berkualitas baik haruslah kaya gizi, lezat, bersih, dan aman untuk dikonsumsi sehingga diperlukan sistem penyelenggara yang efektif (Assidiq dkk., 2019). Makanan dapat menyebabkan penularan penyakit yang bisa ditularkan dari seseorang ke orang lain dan menjadi lingkungan yang ideal untuk bakteri penyebab keracunan tumbuh subur (Soedarto, 2013). Berdasrkan SNI 2897: 2008 mengenai MPN cemaran bakteri *Escherichia coli* pada sampel makanan yaitu sebesar < 3.6 MPN/gram (SNI 2897, 2008)

2. Pengertian telur

Telur dijadikan bahan pangan protein dikarenakan kadar protein tinggi yang diakibatkan karena asam amino yang diperlukan, menyebabkan telur dijadikan sumber protein yang sering dikonsumsi (Adyatama & Nugraha, 2020). Telur ayam biasanya mengandung sekitar 12 hingga 16 persen protein, atau sekitar 7 hingga 8 gram protein per butir telur ayam. Selain itu, ada juga mineral mikro yaitu zat besi, seng, dan selenium. Jumlah zat besi dalam telur ayam utuh ialah sekitar 1,04 mg, sedangkan dalam kuning telur sekitar 0,95 mg. Kadar seng dalam telur ayam utuh yaitu sebesar 0,72 mg dan kuning telur ialah 0,58 mg zat tersebut. (Keintjem *et al.*, 2022).

Telur memiliki 3 struktur yang meliputi cangkang telur, putih telur, dan kuning telur. Kuning telur mempunyai nutrisi bagi tubuh kita meliputi protein, mineral, vitamin, dan lemak (*lipid*). Putih telur atau albumen mengandung zat gizi yaitu protein. (Cheung, 2015).

Telur layak dikonsumsi seharusnya memenuhi syarat seperti kualitas fisik, mikrobiologi, dan organoleptik. Telur yang sampai kepada konsumen akhir biasanya terdistribusi melalui bebrapa rantai yaitu mulai dari produsen, distributor, pedagang pengumpul, dan pedagang pengencer (Suharyanto, 2007b). Menurut Suharyanto (2007a) distribusi telur dari distributor ke pedagang pengencer telah menunjukkan adanya penurunan kualitas fisik (Suharyanto, 2007a).

Telur umumnya mengalami kerusakan dan mempunyai masa simpan yang pendek, jika disimpan dalam suhu ruangan tanpa perlakuan khusus sekitar 10 hingga 14 hari. Telur jika disimpan dapat mempengaruhi penurunan berat, perubahan komposisi kimia, dan cairan di dalamnya menjadi lebih encer (Cornelia dkk., 2014). Apabila telur disimpan tanpa perlakuan, hal itu bisa memengaruhi kualitasnya dengan menurunkan berat telur, *haugh unit*, kedalaman rongga udara (Jazil dkk., 2013) selain itu, stabiltas emulsi dan kemampuan berbuih juga dipngaruhi. Namun seiring berjalannya waktu, kemampuan berbuih telur dapat meningkat (Siregar dkk., 2012).

3. Faktor terkontaminasi makanan

Makanan dapat terkontaminasi dikarenakan benda atau zat berbahaya atau patogen masuk ke dalam makanan tanpa disengaja. Makanan dapat terkontaminasi melalui (Arisman, 2009):

- a. Kontaminasi langsung ialah ketika benda atau zat masuk ke dalam proses pengolahan makanan tanpa melalui perantara atau media lain. Sebagai contoh, lalat masuk langsung ke dalam telur ayam yang direbus tanpa adanya intervensi dari penangan makanan.
- b. Kontaminasi silang terjadi saat bahan makanan mentah atau makanan yang telah dimasak terkontaminasi melalui perantara atau tanpa disengaja oleh penanganan saat memproses makanan. Sebagai contoh, alat-alat yang digunakan oleh penangan dan tangan manusia yang mengandung patogen dapat menjadi sumber kontaminasi.

4. Sumber kontaminasi makanan

Upaya pencegahan pangan yang terkontaminasi secara fisik, kimia, dan biologis yang dapat menyebabkan dampak buruk bagi kesehatan sehingga diperlukan keamanan pangan (Peraturan Pemerintah, 2019). Adapun sumber kontaminasi makanan sebagai berikut (Nely, 2019):

- a. Tinja manusia dan hewan
- b. Binatang peliharaan
- c. Air yang dipakai untuk pengolahan telah tercemar
- d. Makanan hewan yang terinfeksi
- e. Lalat dan serangga secara tidak sengaja berada di dalam makanan
- f. Terjadi kontaminasi silang selama penyimpanan
- g. Kondisi wadah dan tempat penyimpanan peralatan yang tidak memadai (Nely, 2019).

B. Hygiene Sanitasi Makanan

Adapun prinsip hygiene sanitasi makanan:

1. Pemilihan bahan makanan

Pemilihan bahan makanan mencakup semua jenis bahan, baik yang sudah diolah ataupun belum sesuai dengan Kepmenkes RI No. 1908/Menkes/SK/VII/2003 ((Departemen Kesehatan RI, 2003). Adapun menurut Permenkes RI Nomor 1096/Menkes/Per/VI/2011 tentang Higiene Sanitasi Jasaboga mengenai ciri-ciri bahan makanan yang baik salah satunya yaitu telur. (Kemenkes RI, 2011):

- a. Terlihat kokoh dan bersih.
- b. Tidak mengalami retak, bocor, dan rusak
- c. Tidak ada kotoran pada kulitnya.
- d. Dilapisi dengan lapisan tepung pada bagian epidermis.
- e. Kulit telur dalam keadaan tidak basah setelah dicuci.
- f. Saat diteropong (candling) tampak cerah dan bersih.
- g. Telur diambil langsung dari kandang, bebas dari perlakuan tambahan meliputi menghilangkan kotoran atau pengelapan, dapat mempercepat kerusakan ialah telur yang terbaik.

2. Penyimpanan bahan makanan

Menurut Permenkes RI No. 1096/Menkes/Per/VI/2011 tentang penyimpanan bahan makanan :

- a. Lokasi penyimpanan bahan makanan harus terlindungi dari risiko pencemaran oleh bahan-bahan berbahaya, bakteri, tikus, serangga dan hewan lainnya.
- b. Prinsip FIFO dan FEFO harus diterapkan dalam penyimpanan, dimana bahan makanan yang telah disimpan lebih lama dan mendekati tanggal kadaluarsa harus diprioritaskan untuk dipakai terlebih dahulu.

- c. Ketika memilih tempat untuk meyimpan makanan, kita harus memikirkan jenis makanan yang akan disimpannya. Makanan yang awet lebih baik disimpan di tempat yang tidak basah dan tembus udara, sementara makanan yang rentan cepat membusuk lebih baik disimpan dalam wadah yang kedap udara.
- d. Suhu penyimpanan bahan makanan harus dijaga.
- e. Ukuran dan densitas bahan tidak boleh melebihi 10 cm.
- f. Kadar air penyimpanan dalam ruangan harus berada pada rentang 80%-90%.
- g. Makanan yang dikemas rapat dan makanan olahan pabrik harus disimpan pada temperature sekitar $\pm 10^{\circ} C$.
- h. Bahan makanan tidak boleh bersentuhan
 - 1) Batas antar bahan makanan dengan lantai adalah 15 cm.
 - 2) Batas antara bahan makanan dengan dinding adalah 5 cm.
 - 3) Batas antara bahan makanan dengan langit-langit adalah 60 cm. (Kemenkes RI, 2011).

3. Pengolahan makanan

Menurut Permenkes RI No 1096/Menkes/Per/VI/2011 tentang pengolahan makanan melibatkan transformasi bahan mentah menjadi makanan matang atau siap santap, dengan mematuhi prinsip-prinsip tata cara pengolahan yang baik. Aspek-aspek yang harus diperhatikan dalam GMP atau CPMB yaitu tempat pengolahan makanan dan alat masak yang digunakan. (Kemenkes RI, 2011).

4. Penyimpanan makanan jadi

Makanan disimpan harus tetap segar dan tidak basi dapat dikenali dari aroma, rasa, tekstur, warna, keberadaan lendir, tanda-tanda pertumbuhan jamur, serta kondisi tidak rusak atau busuk. Kontrol suhu saat penyimpanan makanana jadi

harus diperhatikan untuk mencegah kerusakan pada makanan. (Kemenkes RI, 2011).

No	Jenis makanan	Suhu penyimpanan		
		Disajikan dalam	Segera	Belum segera
		waktu lama	disajikan	disajikan
1	Makanan kering	25°C-30°C		-
2	Makanan basah	-	≥60 °C	-10 °C
3	Makanan cepat basi	-	≥65,5 °C	-5 °C s/d -1 °C
4	Makanan saji dingin	-	5°C-10°C	≤10 °C

Gambar 1. Tabel suhu penyimpanan makanan jadi (Kemenkes RI, 2011).

Selain memantau suhu, penting juga mengontrol kelembaban saat menyimpan makanan jadi, yang harus berada dalam kisaran 80% hingga 90%. Makanan yang disajikan harus ditempatkan dalam wadah steril dan aman bagi kesehatan untuk mengurangi resiko pencemaran. Higiene sanitasi dalam pemilihan wadah meliputi:

- a. Setiap hidangan memiliki wadah tersendiri yang terpisah.
- Setiap wadah harus dilengkapi dengan penutup yang bisa mengeluarkan uap air.
- c. Lauk yang berkuah harus dipisahkan dari kuahnya.
- d. Wadah harus tetap bersih sepanjang waktu.

Temperatur dan kadar air yaitu kondisi yang mendukung pertumbuhan dan perkembangan mikroba, terutama bakteri (Departemen Kesehatan RI, 2003).

5. Pengangkutan makanan

Cara pengolahan makanan yang baik menurut Permenkes RI No. 1096/Menkes/Per/VI/2011 yaitu :

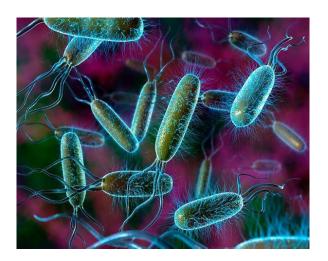
a. Pengangkutan bahan makanan

- 1) Harus dipisahkan dari B3.
- Transportasi yang didedikasikan yang bersih untuk mengangkut bahan makanan.
- 3) Bahan makanan harus dijaga agar tidak terinjak, dilempar, atau diduduki.
- 4) Makanan yang diangkut perlu disimpan dalam suhu dingin di dalam mesin pendingin agar tetap segar dan mencegah kerusakan, seperti susu cair dan daging.

b. Pengangkutan makanan jadi

- 1) Harus dipisahkan dengan B3.
- Trasportasi yang didedikasikan bersih untuk mengngkut makanan jadi atau yang sudah dimasak.
- Setiap jenis makanan cepat saji harus ditempatkan dalam wadah terpisah yang rapat tutupnya.
- 4) Wadah harus dalam keadaan utuh, kokoh, bebas karat dan memiliki ukuran yang sesuai total makanan yang akan dimasukkan.
- 5) Wadah harus diisi tidak penuh untuk mencegah pembentukan uap makanan yang dapat menyebabkan kondensasi.
- 6) Ketika makanan diangkut dalam waktu yang lama, suhu harus dijaga (Kemenkes RI, 2011).

6. Penyajian makanan


Ada beragam teknik penyajian makanan untuk konsumen yang dapat digunakan, dengan catatan bahwa prinsip-prinsip kebersihan sanitasi dijaga. Penggunaan bahan pembungkus seperti plastik dan kertas harus steril dan tidak

mengandung zat beracun. Makanan harus disajikan di tempat yang bersih, peralatan harus steril, udara harus beredar dengan baik, penyaji harus menggunakan pakaian bersih dan rapi termasuk memakai celemek dan penutup kepala, dan harus dihindari interaksi langsung dengan makanan (Kusmayadi, 2008).

C. Bakteri Escherichia coli

1. Pengertian bakteri Escherichia coli

Escherichia coli ialah bakteri yang hidup di saluran pencernaan manusia dan bagian dari flora alami tubuh manusia yang sehat. Namun, infeksi oleh bakteri ini dapat menyebabkan gejala seperti diare, kram perut, muntah, dan demam, mulai dari yang ringan hingga parah (Sinaga, 2017).

Gambar 2. Bakteri Escherichia coli (Maghfiroh et al., 2021).

2. Klasifikasi dan morfologi bakteri Escherichia coli

Klasifikasi bakteri Escherichia coli sebagai berikut (Jawetz et al., 2005):

Kingdom : Prokaryotae

Divisi : Gracilicutes

Kelas : Scotobacteria

Ordo : Enterobacteriales

Famili : Enterobacteriaceae

Genus : Escherichia

Spesies : Escherichia coli

Menurut Jawetz (2005), *Escherichia coli* yaitu koloni bulat, batang pendek, bakteri gram negatif, halus dengan tepi terdefinisi jelas, dan cembung. Bakteri ini mampu memfermentasikan laktosa dan memiliki sifat anaerob fakultatif. Ukuran *Escherichia coli* adalah 2 μm panjangnya, dengan diameter sekitar 0,7 μm, dan lebarnya berkisar antara 0,4 hingga 0,7 μm (Jawetz *et al.*, 2005).

3. Patogenesis bakteri Escherichia coli

Menurut Radji (2010) berdasarkan tingkat keparahan penyakit yang disebabkannya, *Escherichia coli* ada dua jenis, yaitu *E. coli* mengakibatkan infeksi usus dan *E. coli* mengakibatkan infeksi diluar usus. *Escherichia coli* yang menyebabkan infeksi usus sebagai berikut:

a. Escherichia coli enteropatogenik

Diare pada bayi sebagian besar terjadi oleh infeksi EPEC, yang dapat diatasi melalui antibiotik dan menyebabkan diare berair.

b. Escherichia coli enterotoksigenik

Jenis ini dianggap pemicu ganguan pencernaan pada wisatawan karena cenderung terjadi pada anak-anak dan individu yang melakukan perjalanan ke wilayah dengan fasilitas sanitasi yang tidak memadai.

c. Escherichia coli enteroinvasif

Proses infeksi EIEC menyerupai infeksi diakibatkan oleh Shigella, dimana diare sering disertai panas sebagai gejala utama.

d. Escherichia coli enterohemoragik

Bakteri ini memproduksi verotoksin dapat mengakibatkan kolitis berdarah serta sindrom uremik hemolitik.

e. Escherichia coli enteroagregatif (EAEC)

Jenis ini menjadi pemicu gangguan pencernaan di masyarakat negara berkembang. EAEC menempel pada sel manusia menghasilkan diare tanpa darah, tanpa invasi, dan tanpa menyebabkan peradangan pada lapisan mukosa usus.

Escherichia coli yang menyebabkan infeksi diluar usus :

a. Escherichia coli uropatogenik

Bakteri ini mengakibatkan sebagian besar infeksi kandung kemih, sekitar 90%. Karena uretra wanita lebih pendek, wanita memiliki risiko 14 kali lebih tinggi untuk terinfeksi oleh UPEC.

b. Escherichia coli meningitis neonates

Bakteri ini bisa mengakibatkan meningitis pada bayi yang baru lahir. Cara infeksi terjadi adalah ketika bakteri memasuki aliran darah melalui nasofaring atau saluran pencernaan, lalu menembus ke dalam sel-sel otak (Radji, 2010).

4. Faktor yang mempengaruhi pertumbuhan bakteri Eschericha coli

Faktor utama yang mempengaruhi pertumbuhan *Escherichia coli* yaitu suhu, aktivitas air, pH, dan tersedianya oksigen (Rahayu, 2013).

a. Suhu

Menurut WHO (2005) menyatakan bahwa suhu memiliki dampak signifikan terhadap pertumbuhan bakteri. Bakteri dapat diklasifikasikan ke dalam tiga kelompok berdasarkan suhu yang mempengaruhi pertumbuhan mereka: psikrofilik, mesofilik, dan termofilik. Mayoritas bakteri termasuk dalam kelompok mesofilik, yang memiliki suhu optimal sekitar 30°C untuk berbagai bentuk yang hidup bebas (WHO, 2005).

b. Aktivitas Air

Menurut Rahayu (2013) menjelaskan bahwa semua makhluk hidup memerlukan air untuk berlangsungnya kehidupan. Kontribusi air penting dalam berbagai proses metabolisme di dalam sel, serta dalam proses keluar masuknya zat dari sel. Semua tahapan ini memerlukan air. Jika air membeku menjadi es, atau terikat kimia dalam larutan garam atau gula, mikroorganisme tidak dapat menggunakannya. Biasanya, bakteri hanya dapat berkembang biak dan tumbuh dalam media yang memiliki aktivitas air tinggi (Rahayu, 2013).

c. pH

Menurut WHO (2005) secara empiris, derajat keasaman optimal harus ditentukan untuk setiap spesies secara individual. Bakteri dapat dikategorikan ke dalam tiga kelompok utama berdasarkan tingkat keasaman: netrofilik (pH 6,0 hingga 8,0), asidofilik (pH optimal rendah, hingga 3,0), dan alkalofilik (pH optimal tinggi). Namun, sebagaian besar microorganism tumbuh baik pada rentang pH 6,0 hingga 8,0 (netrofilik). Sebagai contoh, *Escherichia coli* bisa bertahan hidup dengan pH di bawah 4,4 yang sangat asam di lingkungan makanan (WHO, 2005).

d. Tersedianya oksigen

Menurut Rahayu (2013) kehadiran oksigen dapat memengaruhi pertumbuhan bakteri *Escherichia coli* sebagai contoh, kelompok bakteri gram negatif, bersifat anaerob fakultatif. Oleh karena itu, dalam daerah infeksi seperti abses abdomen, bakteri tersebut mampu menghabiskan oksigen dengan cepat dan beralih ke metabolisme anaerob. Hal ini menciptakan lingkungan yang tidak mengandung oksigen, memungkinkan pertumbuhan bakteri anaerob muncul dan berpotensi menyebabkan kelainan. (Rahayu, 2013).

5. Pencegahan kontaminasi bakteri Escherichia coli

Pencegahan kontaminasi makanan terhadap bakteri *Escherichia coli* sebagai berikut:

- a. BPOM memiliki tanggung jawab untuk memberikan edukasi mengenai personal hygiene kepada mereka yang menangani makanan dengan tujuan meningkatkan pemahaman dan kesadaran penjamah makanan.
- Menjaga kebersihan pribadi merupakan hal penting bagi para penjamah makanan.
- Penting untuk selalu memperhatikan sanitasi daei alat-alat hingga tempat penjualan.
- d. Semua tahap proses makanan dan minuman harus dilakukan dengan standar kebersihan yang tinggi, dimulai dari pemilihan bahan mentah, penyimpanan, pengolahan hingga penyajian makanan (Inna, 2018).

D. Metode Most Probable Number (MPN)

Metode ini untuk mengukur jumlah mikroba tertentu dalam sampel dengan cara menambahkan sampel ke dalam tabung yang berisi media biakan. Prinsip dasar bergantung pada perbandingan jumlah faktor positif dan negatif dalam sampel yang mengandung atau tidak mengandung mikroorganisme. Estimasi jumlah mikroorganisme dalam sampel ini dapat dilakukan dengan memperkirakan seberapa mungkin mikroorganisme hadir dalam sampel awal. Kalkulasi ini didasarkan pada asumsi bahwa mikroorganisme tersebar secara merata dan acak di dalam sampel. Sampel bisa berbentuk padat atau cair, dengan sampel cair yang tidak memerlukan pengenceran, sampel padat memerlukan dilusi sebelum pengujian. Metode MPN memiliki keunggulan dibandingkan metode perhitungan cawan tradisional, karena lebih sensitif dan mampu mendeteksi mikroorganisme dengan lebih baik. Selain itu, metode ini serbaguna dan dapat mendeteksi berbagai jenis mikroorganisme menggunakan berbagai jenis media kultur dan kondisi inkubasi. Dengan demikian, metode MPN dapat digunakan untuk mendeteksi mikroorganisme berbahaya dalam makanan serta menentukan apakah suatu makanan memenuhi standar keamanan berdasarkan jumlah mikroorganisme yang terdeteksi (Silva et al., 2013).

Adapun yang meliputi metode MPN sebagai berikut :

1. Uji pendugaan

Uji penduga merupakan teknik pengujian yang bertujuan untuk mendeteksi keberadaan bakteri yang mampu mengubah laktosa menjadi gas menghasilkan perubahan warna pada indikator uji. Dalam metode uji penduga, tabung fermentasi disiapkan untuk masing-masing pengenceran atau seri yang berbeda, lalu

diinkubasi suhu 35°C selama 24 jam sebelum diamati. Sampel diinokulasi dalam media kultur, inkubasi selama periode waktu 24-48 jam. Sampel yang menunjukkan hasil positif setelah inkubasi awal akan diuji lebih lanjut dengan uji penguat. Keberadaan gas dalam tabung menunjukkan hasil positif dalam pengujian, sedangkan jika tidak ada gas, inkubasi akan dilanjutkan selama 24 jam lagi. Setelah inkubasi selama total 48 jam, keberadaan gas akan menunjukkan hasil positif dalam uji, jika tidak ada gas, hasil uji akan dianggap negatif (Spellman, 2008).

2. Uji konfirmasi

Tabung reaksi positif uji pendugaan kemudian diproses melalui uji konfirmasi. Sampel positif yaitu adanya gas diinokulasi ke dalam medium ECB, dan kemudian diinkubasi. Jumlah tabung positif, yang ditandai dengan produksi gas, kemudian dibandingkan dengan tabel MPN. Angka tercatat dalam tabel MPN mencerminkan jumlah bakteri per gram atau per milliliter sampel. (Dhafin, 2017).

3. Isolasi-identifikasi

Dalam proses isolasi dan identifikasi, hasil positif ditandai oleh adanya pusat koloni dengan warna hitam yang cenderung kehijauan metalik pada media EMBA. Media EMBA mengandung laktosa, yang memungkinkan untuk membedakan bakteri yang melakukan fermentasi laktosa, seperti *Escherichia coli*. (Brooks *et al.*, 2013).

4. Uji biokimia

a. Uji produksi indol

Dalam uji ini, setelah penambahan reagen kovac terjadi pembentukan lapisan (cincin) warna merah muda pada permukaan biakan yang menunjukkan bahwa bakteri *Escherichia coli* telah mengubah *tryptofan* menjadi indol sebagai sumber karbon. (Hafsan, 2015).

b. Uji *Voges-Proskauer*

Prinsip uji ini adalah jika ada asetoin dalam kultur bakteri, maka akan terjadi variase pigmen menjadi merah ketika ditambahkan α-naphtol dan KOH 40%. Pengujian ini meunjukkan bahwa bakteri *Escherichia coli* tidak ditemukan, karena bakteri bisa mengubah karbohidrat menjadi asam dan tidak menghasilkan produk netral yaitu asetoin. (Bambang & Andrian, 2014).

c. Uji methyl red

pH 4,4, larutan akan berwarna merah, sedangkan pH 6.2, larutan akan berwarna kuning. Perubahan warna ini mengindikasikan bahwa bakteri tersebut menghasilkan asam campuran, yaitu *metilen glikon*, melalui metabolisme fermentasi glukosa dalam medium MR-VP. Uji ini menunjukkan hasil positif yang dapat diamati dari variasi pigmen menjadi merah setelah indikator *methyl red* ditambahkan (Putri, 2015).

d. Uji sitrat

Jika bakteri bisa membuat sitrat sebagai makanan, dengan demikian mereka membuat media kultur berubah warna dari hijau jadi biru dengan meningkatkan pH-nya. *Escherichia coli* tidak berhasil dalam tes ini karena tidak bisa memanfaatkan sitrat sebagai makanan. (Bambang & Andrian, 2014).