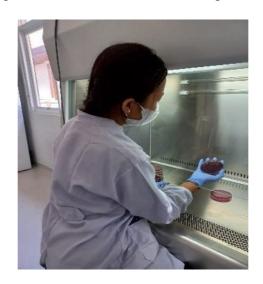
BAB V

HASIL PENELITIAN DAN PEMBAHASAN

A. Hasil Penelitian

Gambar 3. Lawar Plek


Sampel lawar plek yang digunakan dalam penelitian ini didapatkan dengan cara membeli dari pedagang lawar plek yang berada di kawasan Desa Ketewel, Kabupaten Gianyar. Lawar Plek ini adalah menggunakan daging mentah yang dicincang halus. Pada sampel ini digunakan beberapa daging yaitu ada daging kambing, ayam, ikan, dan babi.

Tabel 3. Hasil Observasi Sampel lawar plek

No	Jenis Daging	Jumlah
1	Daging Babi	13
2	Ayam	4
3	Kambing	1
4	Sapi	2
5	Ikan	3
Total		23

Berdasarkan table 3, diperoleh hasil yakni seluruh sampel lawar plek menggunakan daging mentah yang dicampur bumbu rempah-rempah dan tidak melalui proses pemasakan. Jenis daging yang digunakan yakni daging kambing, daging ikan, daging ayam, dan daging babi.

1. Peremajaan/penanaman koloni bakteri *E.coli* pada media EMBA

Gambar 4. Penanaman koloni bakteri E.coli

Peremajaan koloni bakteri pada media EMBA dilakukan dengan cara pembuatan suspensi dari lawar plek, yang kemudian di strike pada media EMBA melewati tahap inkubasi untuk penumbuhannya. Sehingga didapatkan hasil dari 23 sampel yang sudah di tanam pada media EMBA positif bakteri *E.coli*, hasil inokulasi bakteri yang diperoleh hasil yakni seluruh sampel lawar plek (100%) yang diinokulasikan pada media *Eosin Methylene Blue Agar* atau EMBA

menunjukkan pertumbuhan koloni bakteri.

Gambar 5. koloni bakteri E.coli

Seluruh media EMBA yang ditumbuhi koloni bakteri dilakukan identifikasi koloni berdasarkan ciri-ciri yang ditunjukkan. Masing-masing koloni bakteri menunjukkan ciri-ciri yang beragam sehingga diperlukan identifikasi untuk mengetahui jenis koloni yang tumbuh pada media EMBA berdasrkan ciriciri yang ditunjukkan dari setiap koloni yang tumbuh. Hasil identifikasi koloni yang tumbuh pada media EMBA disajikan pada table berikut:

Tabel 5. Hasil Identifikasi Koloni Bakteri Pada EMBA

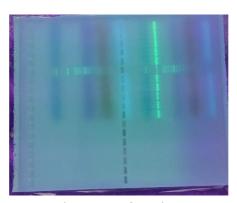
No.	Kode Sampel	Ciri-ciri Koloni	Keterangan
1.	Lawar 1	Koloni berbentuk bulat	Terduga Escherichia coli
		dan berwarna hijau	dengan inti gelap
		metalik	kehitaman
2.	Lawar 02	Koloni berbentuk bulat	Terduga Escherichia coli
		dan berwarna hijau	dengan inti gelap
		metalik	kehitaman

2	I 02	IZ -1: 11-	11-4	T1
3.	Lawar 03	Koloni berbentuk		
		dan berwarna	hijau	dengan inti gelap
		metalik		kehitaman
4.	Lawar 04	Koloni berbentuk		
		dan berwarna	hijau	dengan inti gelap
		metalik		kehitaman
5.	Lawar 05	Koloni berbentuk	bulat	Terduga <i>Escherichia coli</i>
		dan berwarna	hijau	dengan inti gelap
		metalik		kehitaman
6.	Lawar 06	Koloni berbentuk	bulat	Terduga <i>Escherichia coli</i>
		dan berwarna	hijau	dengan inti gelap
		metalik		kehitaman
7.	Lawar 07	Koloni berbentuk	bulat	Terduga Escherichia coli
		dan berwarna	hijau	dengan inti gelap
		metalik		kehitaman
8.	Lawar 08	Koloni berbentuk	bulat	Terduga Escherichia coli
		dan berwarna	hijau	dengan inti gelap
		metalik		kehitaman
9.	Lawar 09	Koloni berbentuk	bulat	Terduga Escherichia coli
		dan berwarna	hijau	dengan inti gelap
		metalik		kehitaman
10.	Lawar 10	Koloni berbentuk	bulat	Terduga Escherichia coli
		dan berwarna	hijau	dengan inti gelap
		metalik	-	kehitaman
11.	Lawar 11	Koloni berbentuk	bulat	Terduga Escherichia coli
		dan berwarna	hijau	dengan inti gelap
		metalik		kehitaman
12.	Lawar 12	Koloni berbentuk	bulat	Terduga Escherichia coli
		dan berwarna	hijau	dengan inti gelap
		metalik		kehitaman
13.	Lawar 13	Koloni berbentuk	bulat	Terduga Escherichia coli
		dan berwarna	hijau	dengan inti gelap
		metalik	3	kehitaman
14.	Lawar 14	Koloni berbentuk	bulat	Terduga Escherichia coli
		dan berwarna	hijau	dengan inti gelap
		metalik	3	kehitaman
15.	Lawar 15	Koloni berbentuk	bulat	Terduga Escherichia coli
		dan berwarna	hijau	dengan inti gelap
		metalik	J · · ·	kehitaman
16.	Lawar 16	Koloni berbentuk	bulat	
		dan berwarna	hijau	dengan inti gelap
		metalik		kehitaman
17.	Lawar 17	Koloni berbentuk	bulat	
1/.	Lawai 1/	12010111 Octobritus	Julat	101daga Escherichia coll

		dan berwarna	hijau	dengan inti gelap
		metalik		kehitaman
18.	Lawar 18	Koloni berbentuk	bulat	Terduga <i>Escherichia coli</i>
		dan berwarna	hijau	dengan inti gelap
		metalik		kehitaman
19.	Lawar 19	Koloni berbentuk	bulat	Terduga <i>Escherichia coli</i>
		dan berwarna	hijau	dengan inti gelap
		metalik		kehitaman
20.	Lawar 20	Koloni berbentuk	bulat	Terduga <i>Escherichia coli</i>
		dan berwarna	hijau	dengan inti gelap
		metalik		kehitaman
21.	Lawar 21	Koloni berbentuk	bulat	Terduga <i>Escherichia coli</i>
		dan berwarna	hijau	dengan inti gelap
		metalik		kehitaman
22.	Lawar 22	Koloni berbentuk	bulat	Terduga <i>Escherichia coli</i>
		dan berwarna	hijau	dengan inti gelap
		metalik		kehitaman
23.	Lawar 23	Koloni berbentuk	bulat	Terduga <i>Escherichia coli</i>
		dan berwarna	hijau	dengan inti gelap
		metalik		kehitaman

Berdasarkan tabel 5, diperoleh hasil yakni sampel terduga koloni bakteri *Escherichia coli* menunjukkan ciri-ciri koloni berbentuk bulat dan berwarna hijau metalik dengan inti gelap kehitaman.

Tabel 6. Hasil Persentase Identifikasi Bakteri Escherichia coli Pada EMBA


Hasil Identifikasi Koloni	Jun	llah	Persentase (%)	_
Terduga Koloni Bakteri Escherichia	a coli	23	100 Negatif Koloni	_
Bakteri Escherichia coli 0	0			
Total			23	100

Berdasarkan tabel 6, sebanyak 23 sampel (100 %) terduga koloni bakteri *Escherichia coli*. Pada ke-23 sampel terduga koloni bakteri *Escherichia coli*, pemeriksaan dilanjutkan ke tahap ekstraksi.

Gambar 6. Proses Ekstraksi Koloni Terduga Bakteri Escherichia coli

Pada sampel yang terduga koloni bakteri *Escherichia coli*, pemeriksaan dilanjutkan ke tahap pembuatan suspense lalu di ekstraksi untuk memperoleh DNA yang terkandung pada koloni tersebut. Untuk menilai kualitas hasil proses ekstraksi, dilakukan pemeriksaan secara elektroforesis.

Gambar 7. Hasil Elektroforesis Ekstraksi DNA

Pada pemeriksaan secara elektroforesis didapatkan hasil munculnya pita band pada gel dan ekstraksi dari sampel koloni *Escherichia coli*, berhasil tanpa adanya bias/smear pada gel. Penilaian hasil ekstraksi secara kuantitatif dilakukan dengan menggunakan alat nanodrop.

Gambar 8. Hasil Nanodrop Ekstraksi DNA

Setelah dilakukan pemeriksaan hasil ekstraksi, dilakukan penilaian pada setiap pemeriksaan ekstraksi seperti yang disajikan pada tabel berikut:

Tabel 7 Hasil Ekstraksi Koloni Terduga Bakteri Escherichia coli

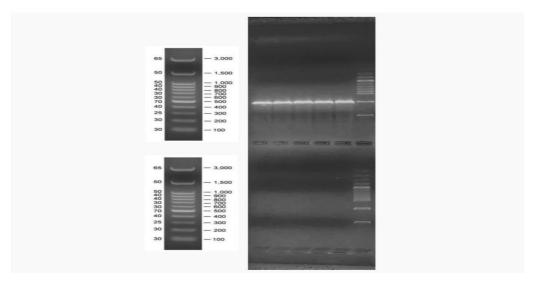
			Nanodrop			
No	Kode	Elektroforesi	foresi Konsentras	Kemurnian		
		s	(ng/µl)	A260/280	A260/230	
1	Lawar 01	Terdapat pita / band	107,9	1,87	2,14	
2	Lawar 02	Terdapat pita / band	113,3	1,93	2,11	
3	Lawar 03	Terdapat pita / band	110,4	1,81	2,17	
4	Lawar 04	Terdapat pita / band	112,4	1,90	2,10	
5	Lawar 05	Terdapat pita / band	8,6	1,20	0,42	
6	Lawar 06	Terdapat pita / band	42,2	1,43	10,77	
7	Lawar 07	Terdapat pita / band	22,9	1,33	2,73	
8	Lawar 08	Terdapat pita / band	15,6	1,33	0,25	
9	Lawar 09	Terdapat pita / band	25,0	1,34	0,37	
10	Lawar 10	Terdapat pita / band	10,0	1,34	0,50	
11	Lawar11	Terdapat pita / band	12,4	1,16	0,21	
12	Lawar 12	Terdapat pita / band	28,0	1,37	0,25	
13	Lawar 13	Terdapat pita / band	18,8	1,29	0,29	
14	Lawar 14	Terdapat pita / band	35,1	1,27	0,29	
15	Lawar 15	Terdapat pita /	19,4	1,36	0,29	

		band			
16	Lawar 16	Terdapat pita / band	22,9	1,33	0,34
17	Lawar 17	Terdapat pita / band	15,6	1,23	0,25
18	Lawar 18	Terdapat pita / band	35,1	1,38	0,51
19	Lawar 19	Terdapat pita / band	42,2	1,43	0,84
20	Lawar 20	Terdapat pita / band	16,7	1,46	0,33
21	Lawar 21	Terdapat pita /	19,4	1,37	0,28
22	Lawar 22	band Terdapat pita /	25,6	1,32	0,51
23	Lawar 23	band Terdapat pita / band	31,8	1,61	0,64

Berdasarkan tabel 7 dan gambar 8 , diperoleh hasil bahwa seluruh sampel menunjukkan terdapat DNA total secara kualitatif dan secara kuantitatif konsentrasi hasil ekstraksi dapat diukur dan diperoleh nilai kemurnian, kemudian dilanjutkan pemeriksaan PCR

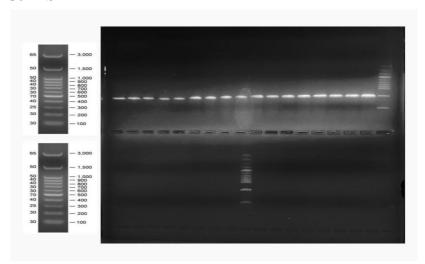
2. Uji PCR

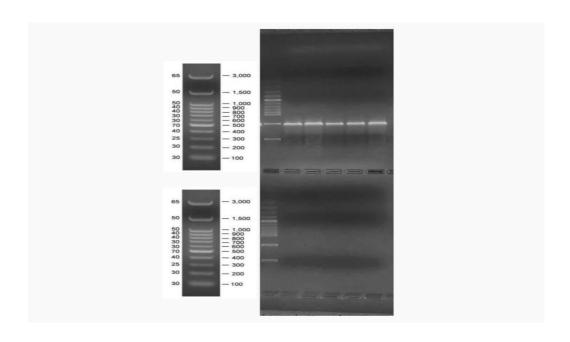
Gambar 8. Pemeriksaan dengan alat PCR


Pemeriksaan gen DNA bakteri E.coli pembawa patogen yang disandingkan

dengan gen 16S sebagai kontrol internal menggunakan metode PCR, didapatkan hasil sebagai berikut.

a. Gen STEC


Gambar 9. Sampel 01-18


Gambar 10. Sampel 19-23

Berdasarkan kedua gambar didapatkan hasil PCR well bagian atas merupakan gen 16S, dan well bagian bawah merupakan gen STEC dari well primer gen STEC sampel 01 sampai 23 tidak ditemukan pita band atau pendaran pita pada gel, namun pada well primer gen 16S terdapat pendaran atau pita band yang menyatakan seluruh sampel positif gen 16S dengan munculnya pita band ukuran 1.550 bp, jika muncul pita band STEC dapat dikatan postif STEC, patotipe yang paling banyak ditemukan sebagai penyebab penyakit diare.

b. Gen ESBL

Gambar 11. Sampel 01-18

Gambar 12. Sampel 19-23

Berdasarkan kedua gambar didapatkan hasil PCR well bagian atas merupakan gen 16S, dan well bagian bawah merupakan gen ESBL dari well primer gen ESBL sampel 01 sampai 23 tidak ditemukan pita band atau pendaran pita pada gel, namun pada well primer gen 16S terdapat pendaran atau pita band yang menyatakan seluruh sampel positif gen 16S dengan munculnya pita band ukuran 1.550 bp. Resistensi antibiotik dapat didiagnosis jika pita ESBL positif. Hal ini karena enzim Extended Spectrum Beta-laktamase menghidrolisis antibiotik golongan penisilin, serta sefalosporin dan monobaktam generasi pertama, kedua, dan ketiga, sehingga menyebabkan resistensi terhadap semua antibiotik tersebut.

Kode Sampel	Gen STEC	Gen ESBL
Lawar 01	Gen Tidak Ditemukan	Gen Tidak
		Ditemukan
Lawar 02	Gen Tidak Ditemukan	Gen Tidak
Lawai 02	Gen Haak Ditemukan	Ditemukan
Lawar 03	Gen Tidak Ditemukan	Gen Tidak
Lawai 03	Gen Haak Ditemakan	Ditemukan
Lawar 04	Gen Tidak Ditemukan	Gen Tidak
Lawai 04	Gen Haak Ditemukan	Ditemukan
Lawar 05	Gen Tidak Ditemukan	Gen Tidak
Lawai 03	Gen Haak Ditemakan	Ditemukan
Lawar 06	Gen Tidak Ditemukan	Gen Tidak
Lawai 00	Gen Haak Ditemakan	Ditemukan
Lawar 07	Gen Tidak Ditemukan	Gen Tidak
Lawar 07	Gen Haak Bremakan	Ditemukan
Lawar 08	Gen Tidak Ditemukan	Gen Tidak
Lawar 00	Gen Haak Bremakan	Ditemukan
Lawar 09	Gen Tidak Ditemukan	Gen Tidak
Lawar 09	Gen Haak Ditemakan	Ditemukan
Lawar 10	Gen Tidak Ditemukan	Gen Tidak
Lawai 10	Son Haak Ditelliakan	Ditemukan
Lawar 11	Gen Tidak Ditemukan	Gen Tidak
Luwui 11	Gen Haak Ditemakan	Ditemukan

Lawar 12	Gen Tidak Ditemukan	Gen Tidak Ditemukan
Lawar 13	Gen Tidak Ditemukan	Gen Tidak Ditemukan
Lawar 14	Gen Tidak Ditemukan	Gen Tidak Ditemukan
Lawar 15	Gen Tidak Ditemukan	Gen Tidak Ditemukan
Lawar 16	Gen Tidak Ditemukan	Gen Tidak Ditemukan
Lawar 17	Gen Tidak Ditemukan	Gen Tidak Ditemukan
Lawar 18	Gen Tidak Ditemukan	Gen Tidak Ditemukan
Lawar 19	Gen Tidak Ditemukan	Gen Tidak Ditemukan
Lawar 20	Gen Tidak Ditemukan	Gen Tidak Ditemukan
Lawar 21	Gen Tidak Ditemukan	Gen Tidak Ditemukan
Lawar 22	Gen Tidak Ditemukan	Gen Tidak Ditemukan
Lawar 23	Gen Tidak Ditemukan	Gen Tidak Ditemukan

B. Pembahasan

Pada penelitian ini menggunakan bahan yaitu lawar plek. Dimana lawar ini terbuat dari berbagia daging diantaranya ikan, babi, kambing, sapi dan ayam. Pada penelitian ini menggunakan sampel lawar plek dengan daging babi sebanyak 13 sambel, daging ayam sebanyak 4 sampel, daging kambing 1 sampel, daging sapi sebanyak 2 sampel, serta daging ikan sebanyak 3 sampel. Sehingga total sampel yang digunakan sebanyak 23 sampel.

1. Peremajaan/penanaman koloni bakteri *E.coli* pada media EMBA

Di dalam laboratorium Mikrobiologi, untuk membiakkan bakteri, diperlukan sebuah bahan yang memiliki komposisi nutrisi yang telah diatur, yang disebut

sebagai media. Media adalah bahan yang terdiri dari nutrisi tertentu yang diperlukan untuk pertumbuhan dan pemahaman karakteristik bakteri. Selain dimanfaatkan untuk pertumbuhan bakteri, medium juga dapat digunakan untuk isolasi, pengembangan, pengujian sifat fisiologis, dan penghitungan mikroba (Rosmania dan Yuniar, 2021). Tergantung pada pasokan nutrisi, bentuk fisik, komposisi kimia, variasi pertumbuhan bakteri, dan kapasitas untuk menyaring atau menekan bakteri yang tidak diinginkan, lebih dari sembilan puluh jenis media yang saat ini digunakan dapat dibagi menjadi enam kategori tergantung pada kebutuhan dan karakteristiknya. Penelitian ini menggunakan 23 sampel lawar plek dan menggunakan media EMBA (Eosin Methylen Blue Agar).

EMBA merupakan media kultur yang memiliki sifat diferensial untuk Escherichia coli. Media ini memungkinkan pertumbuhan beberapa jenis bakteri dan menghasilkan koloni bakteri tertentu dengan karakteristik tertentu. EMBA mendukung pertumbuhan bakteri dari kelompok Enterobacteriaceae, termasuk Escherichia coli, yang biasanya membentuk koloni dengan bentuk bulat, diameter sekitar 2-3 mm, berwarna hijau dengan kilap logam, dan memiliki bintik biru kehijauan di tengah koloni. (Fatin dkk., 2019).

Tabel Hopkins, terkadang disebut MPN (angka kemungkinan besar) atau tabel JPT (angka perkiraan terdekat), digunakan untuk menghitung jumlah bakteri E. coli. Jumlah bakteri E. coli dalam sampel air 100 ml dan 0,1 ml dapat diperkirakan menggunakan tabel ini. (Fatin & Rekan, 2019). Dengan menggunakan jarum loop, koloni tunggal yang muncul pada media cawan dikeluarkan dan kemudian disuntikkan secara zigzag ke dalam media tabung reaksi yang miring. Prosedur ini dilakukan di dekat pembakar Bunsen dengan tetap menjunjung standar kebersihan. Tabung reaksi kemudian ditutup dengan

kertas dan dibiarkan dalam inkubator selama sehari penuh. Berdasarkan penelitian yang dilakukan didapatkan hasil bahwa seluruh sampel lawar plek (100%) yang diinokulasikan pada media *Eosin Methylene Blue Agar* atau EMBA menunjukkan pertumbuhan koloni bakteri. Dari 23 sampel tersebut memiliki ciri-cir koloni yaitu berbentuk bulat dan berwarna hijau metalik dengan inti gelap kehitaman, dimana ciri ini merupakan tanda adanya koloni bakteri *Escherichia coli*.

Ketika Escherichia coli berkembang biak di dalam saluran pencernaan atau ditemukan di luar usus, hal ini menjadi berbahaya. Beberapa episode diare dapat disebabkan oleh enterotoksin yang dikeluarkan oleh Escherichia coli. Enterotoksin enteropatogenik diproduksi oleh Escherichia coli dalam sel epitel. (Fatin dkk., 2019). Selanjutnya dilakukan ekstraksi koloni terduga bakteri *Escherichia coli*. Pada penelitian ini diperoleh hasil bahwa seluruh sampel menunjukkan terdapat DNA total secara kualitatif dan secara kuantitatif konsentrasi hasil ekstraksi dapat diukur dan diperoleh nilai kemurnian. Sehingga bisa dilanjutkan untuk pengujian menggunakan PCR.

2. Uii PCR

Suatu penyakit dapat didiagnosis dengan beberapa cara, misalnya dengan mengisolasi agen penyebab dan memeriksa morfologinya, menggunakan teknik enzim-linked immunosorbent assay (ELISA) untuk mendeteksi antibodi yang dihasilkan selama infeksi, atau menggunakan Polymerase Chain Reaction (PCR) untuk mendeteksi penyakit. mengidentifikasi gen agen pembawa penyakit (Saiallagan et al., 2022).

PCR merupakan metode sintesis dan amplifikasi DNA secara in vitro yang melibatkan serangkaian tahap berulang (siklus), dengan jumlah untai DNA target mengalami peningkatan setiap siklusnya. Proses PCR terdiri dari langkah-langkah

berikut: (1) pra-denaturasi DNA cetakan; (2) denaturasi DNA cetakan; (3) anil, atau pelekatan primer ke templat; (4) perpanjangan, atau pemanjangan primer; dan (5) stabilisasi pasca-perpanjangan. Tahapan (2) hingga (4) diulang (disebut sebagai siklus), dengan peningkatan jumlah DNA yang disalin sepanjang setiap siklus. (Saiallagan & Rekan, 2022).

a. Gen STEC

Bakteri yang paling sering menyebabkan diare akibat makan adalah Escherichia coli atau E.coli. E. Coli enteropatogenik (EPEC), E. Coli Enterotoxigenic (ETEC), E. Coli Enteroaggregatif (EAEC), E. Coli Enteroinvasif (EIEC), dan E. Coli penghasil toksin Shiga (STEC), umumnya dikenal sebagai Enterohaemorrhagic E. Coli (EHEC), merupakan patotipe bakteri yang diketahui keberadaannya. STEC adalah patotipe yang paling umum di antara kelima patotipe tersebut (Pradnyani dan Budayanti, 2020).

Pada penelitian indentifikasi gen STEC menggunakan PCR didapatkan hasil yaitu sampel 01 sampai 23 tidak ditemukan pita band atau pendaran pita pada gel, namun pada well primer gen 16S terdapat pendaran atau pita band yang menyatakan seluruh sampel positif gen 16S dengan munculnya pita band ukuran 1.550 bp.

b. Gen ESBL

Enzim yang dikenal sebagai ESBL dapat menghidrolisis monobaktam, sefalosporin generasi pertama, kedua, dan ketiga, termasuk antibiotik penisilin, dan juga dapat menyebabkan resistensi terhadap semua antibiotik tersebut. Karena serin terdapat di sebagian besar bagian aktif ESBL, kelas molekul A adalah tempat mereka dikategorikan. Enzim molekuler kelas A ini menghidrolisis

penisilin dan mengandung serin di daerah aktifnya. TEM-1, TEM-2, SHV-1, CTX -M dari kelas A, OXA dari kelas D, PER, dan subtipe ESBL lainnya merupakan sumber ESBL. Plasmid dan kromosom mengandung sejumlah besar gen pengkode ESBL (Bradfor, 2001).

ESBL adalah enzim β -laktamase yang biasanya ditemukan di plasmid. Ini dapat menghidrolisis ikatan tengah penisilin, sefalosporin spektrum luas dengan rantai samping oksimin (cefotaxime, ceftriaxone, dan ceftacidime), dan oxyminomonobactam aztreonam (tetapi bukan sefamisin atau karbapenem), tetapi juga dapat dihambat oleh serin tipe β -laktamase. inhibitor, seperti sulbaktam, klavulanat, dan tazobaktam (Bradfor, 2001).

Pada penelitian yang dilakukan didapatkan hasil bahwa gen ESBL sampel 01 sampai 23 tidak ditemukan pita band atau pendaran pita pada gel, namun pada well primer gen 16S terdapat pendaran atau pita band yang menyatakan seluruh sampel positif gen 16S dengan munculnya pita band ukuran 1.550 bp.